May 11, 2024  
2012-2013 SDSM&T Academic Catalog 
    
2012-2013 SDSM&T Academic Catalog [ARCHIVED CATALOG]

Course Descriptions


Courses above 400 level are normally reserved for graduate studies; however, with approval, undergraduate students may take graduate level courses.  Graduate students may also, with approval, take undergraduate courses.

Students must receive a passing grade of “D” or better for any prerequisite course unless specifically stated.

The course titles are “show/hide” links to the complete course descriptions.  Click on the course title once to “show” the complete course description.  Click on the course title again to “hide” the complete course description.

 

Mathematics

  
  • MATH 498 Undergraduate Research/Scholarship

    Credits: (1-0) 1

    Includes senior project, and capstone experience. Independent research problems/projects or scholarship activities. The plan of study is negotiated by the faculty member and the student. Contact between the two may be extensive and intensive. Does not include research courses which are theoretical.

    Prerequisites: Permission of instructor.


    Check course scheduling information


  
  • MATH 691 Independent Study

    Credits: 1 to 3

    Includes directed study, problems, readings, directed readings, special problems, and special projects. Students complete individualized plans of study which include significant one-on-one student-teacher involvement. The faculty member and students negotiate the details of the study plans. Meetings depending upon the requirements of the topic.

    Prerequisites: Permission of instructor.
    Notes: May be repeated to a total of 6 credit hours.  Students should have obtained permission of an instructor in the Department of Mathematics and Computer Science prior to registering for this course.


    Check course scheduling information


  
  • MATH 692 Topics

    Credits: 1 to 3

    Includes current topics, advanced topics and special topics. A course devoted to a particular issue in a specified field. Course content is not wholly included in the regular curriculum. Guest artists or experts may serve as instructors.

    Notes: May be repeated to a total of 6 credit hours.


    Check course scheduling information



Mechanical Engineering

  
  • ME 110/110L Introduction to Mechanical Engineering/Lab

    Credits: (1-1) 2

    An introductory course for incoming mechanical engineering freshmen which will introduce the student to the profession they have chosen. Topics to be covered include: Solid modeling, CAD lab, professional development, engineering design, technical communication, personal development, and academic success skills.

    Corequisites: ME 110L


    Check course scheduling information


  
  • ME 211 Introduction to Thermodynamics

    Credits: (3-0) 3

    An introduction to the basic concepts of energy conversion, including the first and second laws of thermodynamics, energy and entropy, work and heat, thermodynamic systems analysis, and the concepts of properties and state. Application of these fundamentals to energy conversion systems will be presented.

    Prerequisites: MATH 125  and PHYS 211 
    Notes: A minimum grade of “C” is required for graduation.


    Check course scheduling information


  
  • ME 216 Introduction to Solid Mechanics

    Credits: (3-0) 3

    This course covers the fundamental concepts of solid mechanics including the definition of stress, transformations and states of stress; plane stress, plane strain, octahedral stresses, three dimensional stresses, and principal stresses in two and three dimensions. Additional topics include strain analysis, strain measurements and rosette analysis, generalized Hooks law, and orthotropic materials. Specific applications are an introduction to composite materials, analysis of thin and thick cylinders, statically indeterminate members, torsional loading of shafts, power transmission and the shaft analysis, torsional loads in non-circular components and thin tubes, stress concentrations, and combined loads.

    Prerequisites: EM 214  with a minimum grade of “C”.


    Check course scheduling information


  
  • ME 221 Dynamics of Mechanisms

    Credits: (3-0) 3

    Brief review of dynamics of a particle. Kinetics and kinematics of two and three-dimensional mechanisms. Emphasis will include free body diagrams, vector methods, and various coordinate systems. Newton’s law and energy methods will both be used.

    Prerequisites: PHYS 211 , EM 214 , MATH 125 
    Notes: A minimum grade of “C” is required for graduation.


    Check course scheduling information


  
  • ME 262 Product Development

    Credits: (2-0) 2

    The course presents in a detailed fashion useful tools and structured methodologies that support the product development practice. Also, it attempts to develop in the students the necessary skills and attitudes required for successful product development in today’s competitive marketplace. The cornerstone is a semester-long project in which small teams of students conceive, plan, and design a simple physical product. Each student brings his/her own background to the team effort and must learn to synthesize his/her perspective with those of the students on the team to develop a marketable product. An introduction to manufacturing aspects that must be taken into consideration during product development is provided in context of the project.

    Prerequisites: ME 110/110L  and sophomore standing.


    Check course scheduling information


  
  • ME 264/264L Sophomore Design/Lab

    Credits: (1-1) 2

    This course focuses on the design process including project management and teamwork; formal conceptual design methods; acquiring and processing information; design management tools; design for manufacturability, reliability, maintainability, sustainability; design communication: reports and presentations; ethics in design; prototyping designs; case studies.

    Prerequisites: Sophomore standing.
    Corequisites: ME 264L
    Notes: This course is cross listed with EE 264/264L  and CENG 264/264L .


    Check course scheduling information


  
  • ME 312 Thermodynamics II

    Credits: (3-0) 3

    Thermodynamic power cycles using vapors and gases. One-dimensional compressible flow. Energy analysis. Refrigeration cycles. Moistures and psychrometry. Maxwell’s relations. Combustion and thermochemistry.

    Prerequisites: ME 211  and ME 221 
    Notes: A minimum grade of “C” is required for graduation.


    Check course scheduling information


  
  • ME 313 Heat Transfer

    Credits: (3-0) 3

    A study of the transfer of heat by conduction, convection and radiation. Application to thermal systems.

    Pre or Corequisites: ME 331 , MATH 373  or permission of instructor.
    Notes: A minimum grade of “C” is required for graduation.


    Check course scheduling information


  
  • ME 316 Solid Mechanics

    Credits: (3-0) 3

    Covers stress analysis and failure theories of both brittle and ductile materials and energy methods. Also includes such topics as elastic impact, stability, axis-symmetric loaded members in flexure and torsion, and an introduction to plastic behavior of solids.

    Prerequisites: ME 216  and ME 221  both with a minimum grade of “C”.
    Notes: A minimum grade of “C” is required for graduation.


    Check course scheduling information


  
  • ME 322 Machine Design I

    Credits: (3-0) 3

    Applications of the fundamentals of strength of materials, basic elastic theory, material science and how they apply to the design and selection of machine elements. Elements include shafts, gears, fasteners, and drive components such as gears and chains.

    Prerequisites: ME 316  and ME 264/264L  both with a minimum grade of “C”.
    Notes: A minimum grade of “C” is required for graduation.


    Check course scheduling information


  
  • ME 331 Thermo Fluid Dynamics

    Credits: (3-0) 3

    A study of the nature of fluids, constitutive relations, fluid statics/buoyancy, and the equations governing the motion of ideal (inviscid) and viscous, incompressible fluids, as well as inviscid, compressible fluids (1-dimensional gas dynamics). Internal and external flows, including viscous pipe flow, the Moody diagram, lift, drag and separation. Laminar and turbulent boundary layer theory, and dimensional analysis, modeling, and similitude.

    Prerequisites: ME 211 , ME 221  and MATH 321 
    Notes: A minimum grade of “C” is required for graduation.


    Check course scheduling information


  
  • ME 351/351L Mechatronics and Measurement Systems/Lab

    Credits: (3-1) 4

    This course will encompass general measurement techniques found in Mechanical and Electrical Engineering. These include measurement of force, strain, frequency, pressure flow rates and temperatures. Elements of signal conditioning and data acquisition will be introduced. In addition to this material, the course will have a Mechatronics approach reflected in the combined applications of electronic mechanical and control systems.

    Prerequisites: CSC 150/150L  and EE 220/220L  or EE 301/301L 
    Corequisites: ME 351L
    Notes: This course is cross listed with EE 351/351L  and CENG 351/351L   A minimum grade of “C” is required for graduation.


    Check course scheduling information


  
  • ME 352 Introduction to Dynamic Systems

    Credits: (3-0) 3

    This is an introductory course in the control of dynamic systems. The course presents the methodology for modeling and linearizing of electrical, mechanical, thermal, hydraulic and pneumatic systems. The course also covers control system analysis and synthesis in the time and the frequency domains.

    Prerequisites: MATH 321 , ME 221 
    Notes: A minimum grade of “C” is required for graduation.


    Check course scheduling information


  
  • ME 391 Independent Study

    Credits: 1 to 3

    Includes directed study, problems, readings, directed readings, special problems and special projects. Students complete individualized plans of study which include significant one-on-one student-teacher involvement. The faculty member and students negotiate the details of the study plans. Meeting frequency depend on the requirements of the topic.

    Prerequisites: Permission of instructor.


    Check course scheduling information


  
  • ME 392 Topics

    Credits: 1 to 3

    Includes current topics, advanced topics and special topics. A course devoted to a particular issue in a specified field. Course content is not wholly included in the regular curriculum. Guest artists or experts may serve as instructors.


    Check course scheduling information


  
  • ME 400/500 Research Problems/Projects

    Credits: 1 to 3

    Independent research problems/projects that lead to a research or design paper but not to a thesis. The plan of study is negotiated by the faculty member and the candidate. Contact between the two may be extensive and intensive. Does not include research courses which are theoretical.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  or permission of instructor
    Notes: Students enrolled in ME 500 will be held to a higher standard than those enrolled in ME 400.


    Check course scheduling information


  
  • ME 402/502 Gas Dynamics

    Credits: (3-0) 3

    This course will review fundamental concepts from thermodynamics including isentropic flow and normal shock functions. The equations of motion will be derived in differential form and wave theory will be introduced. Multidimensional flows and oblique shock theory will be discussed. Integral methods for inviscid, compressible flow will be developed and numerical methods (including the method of characteristics for hyperbolic equations) will be employed in the second half of the course.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  or permission of instructor.
    Notes: Students enrolled in ME 502 will be held to a higher standard than those enrolled in ME 402.


    Check course scheduling information


  
  • ME 404 Heating, Ventilating, and Air Conditioning

    Credits: (3-0) 3

    A study of space heating and cooling systems and equipment, building heating and cooling load calculations, solar radiation concepts, and moist air properties/conditioning processes. Indoor air quality/comfort and health issues will be discussed. Basic heat and mass transfer processes will be introduced; pump and fan performance issues along with duct and piping system design. Heat exchangers and mass transfer devices will also be studied.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  or permission of instructor.


    Check course scheduling information


  
  • ME 419/419L Thermal-Fluid Systems Design/Lab

    Credits: (3-1) 4

    Investigation and design of thermal and fluid systems and components, emphasizing the major thermal/fluid design issues that arise in internal combustion engine power conversion; analysis and synthesis involving modeling and optimization of thermo-fluid systems, components, and processes. Development and application of fundamental numerical tools and algorithms for thermal and fluid problems.  A central design problem for a thermal/fluid system or component will be selected to meet an existing or future project need and will be decomposed into the relevant thermal and fluid aspects which will be studied throughout the course.  Review of the basics of the design process and physical processes important to thermal-fluid problems (basic thermodynamics, heat transfer and fluid mechanics), the fundamentals of building and solving mathematical models, and design issues and concepts unique to internal combustion engines will be discussed.  Students will be required to implement one or more previously developed Fluent learning modules to study the use of CFD in thermal/fluid system design.  The final project will incorporate skills developed in the learning modules into the required design of the system or component.  The laboratory will include experiments to complement the lecture material and provide a means for hands on validations of concepts.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  or permission of instructor.
    Corequisites: ME 419L


    Check course scheduling information


  
  • ME 422 Machine Design II

    Credits: (3-0) 3

    This course will explore advanced structural design concepts within an integrated framework of theory, simulation, experiment, and materials. Of particular importance will be the study of modern topics, such as plastic materials and their response to service loads. Structural mechanics and materials response will be brought together in support of machine component design.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  or permission of instructor.


    Check course scheduling information


  
  • ME 423 Mechanical Vibrations

    Credits: (3-0) 3

    Study of the oscillatory nature and vibration design of mechanical systems. One, two, multi, and infinite degree of freedom systems are analyzed for their response in both free and forced vibration regimes. Particular emphasis is given to designing for vibration control. Brief introductions are made to vibration testing and measurement, and human response to vibrations.

    Prerequisites: ME 312 , ME 351/351L , ME 352  or permission of instructor.


    Check course scheduling information


  
  • ME 425 Probablistic Mechanical Design

    Credits: (3-0) 3

    Basic concepts of probability and statistics are introduced including Gaussian, Exponential, and Weibul distributions. Primary emphasis is placed on treating stresses, strains, deformations, and strength limitations as random variables and computing probability of failure under required loads. Considerable time is devoted to converting data into meaningful engineering parameters for making engineering decisions. Statistical methods applied to topics in mechanical design. (design elective)

    Prerequisites: ME 322 


    Check course scheduling information


  
  • ME 426 Mechanical Systems Analysis Laboratory

    Credits: (0-1) 1

    Use of experimental methods and modern instrumentation techniques to understand the free and forced oscillations of machines and machine components, as well as the control of these vibrations. Laboratory exercises are designed to reinforce material learned in the companion lecture class ME 423 , extend knowledge into new areas, and help to make the connection between theory and practice.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  or permission of instructor.


    Check course scheduling information


  
  • ME 427/427L Computer-Aided Design and Manufacture/Lab

    Credits: (2-1) 3

    Discussion of methods and topics in computer-aided design and manufacture. How to bridge the gap between the design/analysis phase and the actual manufacture phase. Database requirements of CNC machine tools and how they can be constructed.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  or permission of instructor.
    Corequisites: ME 427L


    Check course scheduling information


  
  • ME 428/428L Applied Finite Element Analysis/Lab

    Credits: (2-1) 3

    Basic mathematical concepts of finite element analysis will be covered. The students will learn finite element modeling using state of the art software, including solid modeling. Modeling techniques for beams, frames, two and three- dimensional solids, and then walled structures will be covered in the course.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  or permission of instructor.
    Corequisites: ME 428L
    Notes: This course is cross listed it BME 528/528L 


    Check course scheduling information


  
  • ME 430 Introduction to Wind Energy Engineering

    Credits: (3-0) 3

    This course is an introduction to the theory of and the basic concepts of modern wind energy converters. Various types of wind power generators are discussed and in particular horizontal and vertical axis turbine rotors. Other core subjects are: wind energy conversion, the effect of lift and drag, Betz’s Momentum Theory, and an introduction to rotor aerodynamics. Concepts of wind, wind prediction, boundary layers, wind loads, and turbulences will be covered. Rotor blades, material selection, airfoils, loads, stresses, failure modes, control systems, and wind energy distribution are also introduced.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  or permission of instructor.


    Check course scheduling information


  
  • ME 432/432L/532/532L Experimental Stress Analysis/Lab

    Credits: (3-1) 4

    An introduction to experimental methods for determining stresses inside mechanical components from measuring their deformations and related topics. Topics include: review of stress/strain analysis, analysis of experimental data, data acquisition, strain gages, introductory photoelasticity, and digital image correlation.

    Prerequisites: ME 322  or permission of instructor.
    Corequisites: ME 432L or ME 532L
    Notes: Students enrolled in ME 532/532L will be held to a higher standard than those enrolled in ME 432/432L.


    Check course scheduling information


  
  • ME 443 Composite Materials

    Credits: (3-0) 3

    This course will cover heterogeneous material systems; basic design concepts and preparation; types of composite materials; advances in filaments, fibers and matrices; physical and mechanical properties; failure modes; thermal and dynamic effects; and application to construction, transportation and communication.

    Prerequisites: ME 316  or concurrent enrollment in MET 440.
    Notes: This course is cross listed with MET 433 .


    Check course scheduling information


  
  • ME 453/453L Control Systems/Lab

    Credits: (3-1) 4

    Analysis and design of automatic control and process systems by techniques encountered in modern engineering practice, including both linear and nonlinear systems with either continuous or discrete signals.

    Prerequisites: ME 352  or EE 311/311L 
    Corequisites: ME 453L
    Notes: This course is cross listed with EE 453/453L .


    Check course scheduling information


  
  • ME 455/455L Vehicle Dynamics/Lab

    Credits: (2-1) 3

    Fundamental principles and practices of modern automotive chassis and suspension design, operation and testing are presented in this course. The dynamics of acceleration, braking, ride and handling are covered. Steady state cornering using the standard bicycle model is covered in detail. Laboratory work involves shock absorber and spring testing and the setup and evaluation of Formula SAE and Mini Baja chassis. Students must complete a chasses design project.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  or permission of instructor.
    Corequisites: ME 455L


    Check course scheduling information


  
  • ME 460 Fuels and Combustion

    Credits: (3-0) 3

    This course provides an introductory treatment of fuels and combustion science. The objectives of the course are to develop an understanding of hydrocarbon fuels, combustion reactions and kinetics, flame dynamics, flame stability, and pollutant formation. Coverage includes laminar and turbulent flames, premixed and diffusion flames, and detonations. Fundamental aspects of combustion are applied to analysis of the combustion process and pollutant formation in internal combustion engines and other combustors.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  or permission of instructor.


    Check course scheduling information


  
  • ME 477 Mechanical Engineering Design I

    Credits: (0-2) 2

    The first semester of a two course sequence in senior design practice. Integrates concepts from all areas in mechanical engineering into a practical design project. Fundamentals of the design process, specifications, decision making, and preliminary design will be the focus, with the major part of the course being the project.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  all with a minimum grade of “C” or permission of instructor.


    Check course scheduling information


  
  • ME 479 Mechanical Systems Design II

    Credits: (0-2) 2

    The second semester continuation of Mechanical Systems Design. Integrates concepts from all areas in mechanical engineering into a practical design project. Detailed design and analysis, manufacturing, and assembly will be the focus.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  all with a minimum grade of “C” and ME 477  or permission of instructor.


    Check course scheduling information


  
  • ME 481L Advanced Production Development Lab I

    Credits: (0-1) 1

    Advanced laboratory experience in product development. Students will perform activities in support of preliminary product design and trade studies, including virtual prototyping, computational investigations and proof-of-concept experiments.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  or permission of instructor.
    Corequisites: ME 477 


    Check course scheduling information


  
  • ME 482L Advanced Product Development Lab II

    Credits: (0-2) 2

    Advanced laboratory experience in product development. Students will perform activities in support of detailed product design, including virtual prototyping, computational investigations, and testing of components and systems.

    Prerequisites: ME 312 , ME 313 , ME 316 , ME 322 , ME 331 , ME 351/351L , ME 352  or permission of instructor.
    Corequisites: ME 479 


    Check course scheduling information


  
  • ME 491 Independent Study

    Credits: 1 to 5

    Includes directed study, problems, readings, directed readings, special problems and special projects. Students complete individualized plans of study which include significant one-on-one student-teacher involvement. The faculty member and students negotiate the details of the study plans. Meetings depending upon the requirements of the topic.

    Prerequisites: Permission of instructor.


    Check course scheduling information


  
  • ME 492 Topics

    Credits: 1 to 5

    Includes current topics, advanced topics and special topics. A course devoted to a particular issue in a specified field. Course content is not wholly included in the regular curriculum. Guest artists or experts may serve as instructors.


    Check course scheduling information


  
  • ME 555/555L Advanced Applications in Computational Mechanics/Lab

    Credits: (1-2) 3

    Introduction to solid modeling techniques using advanced solid modeling software. Use of Computational Fluid Mechanics codes for the solution of complex fluid mechanics and heat transfer problems. Use of finite element codes for the solution of non-linear and transient problems in solid mechanics.

    Prerequisites: Senior or higher standing.
    Corequisites: ME 555L


    Check course scheduling information


  
  • ME 612 Transport Phenomena: Momentum

    Credits: (3-0) 3

    Introduction to momentum transport. Equations of continuity and motion. Velocity distributions. Boundary layer theory. Turbulent transport compressible flow.

    Notes: This course is cross listed with CBE 612 .


    Check course scheduling information


  
  • ME 613 Transport Phenomena: Heat

    Credits: (3-0) 3

    An in-depth study of the fundamental laws of heat transfer. Major areas considered are: heat conduction, free and forced convection, and radiative heat transfer. Emphasis is placed on the formulation and solution of engineering problems by analytical and numerical methods.

    Notes: This course is cross listed with CBE 613 .


    Check course scheduling information


  
  • ME 616 Computations in Transport Phenomena

    Credits: (3-0) 3

    Various computerized techniques, including finite difference and finite element, will be used to solve transient and steady state heat transfer problems involving conduction and convection.

    Notes: This course is cross listed with CBE 616 .


    Check course scheduling information


  
  • ME 618 Conduction Heat Transfer

    Credits: (3-0) 3

    The study of conduction heat transfer from fundamental physical considerations and methods for analyzing conduction heat transfer including Bessel’s equation and related functions, separation of variables, superposition, complex combination, Laplace Transforms, normalization, and numerical method applications.


    Check course scheduling information


  
  • ME 619 Convection Heat Transfer

    Credits: (3-0) 3

    The study of convection heat transfer from fundamental conservation principles including fluid stresses and flux laws, integral and differential equations of the boundary layer, and momentum and heat transfer for both external and internal flow under both laminar and turbulent conditions. Topics studied include the influence of temperature dependent properties, convection at high velocities, and free-convection boundary layers.


    Check course scheduling information


  
  • ME 620 Radiation Heat Transfer

    Credits: (3-0) 3

    The study of thermal radiation heat transfer including fundamental concepts, radiation heat transfer in enclosures with no attenuating medium, and radiation heat transfer in the presence of an attenuating medium.


    Check course scheduling information


  
  • ME 623 Advanced Mechanical Vibrations

    Credits: (3-0) 3

    Study of the vibration of systems of articles both forced and free. Included is the study of transient vibrations and system natural frequencies. Classical studies of the vibration of continuous systems, free and forced, damped and undamped using computer solutions are emphasized. Introduction to Theoretical and Experiment Modal Analysis. (Design Elective)

    Prerequisites: ME 423  or equivalent.


    Check course scheduling information


  
  • ME 625 Smart Structures

    Credits: (3-0) 3

    Topics will include dynamics of flexible structures, distributed sensing and actuation, linear and nonlinear control of flexible structures, electrostatic actuation, piezoelectric sensing and actuation, noise absorption, self-healing structures, introduction to adaptive optics, elastic control, vibration control, and other application areas as necessary.


    Check course scheduling information


  
  • ME 673 Applied Engineering Analysis I

    Credits: (3-0) 3

    Advanced topics in engineering analysis. Special mathematical concepts will be applied to mechanical engineering problems. Topics will be selected from the following: Fourier series and boundary value problems applied to heat conduction and convection, Laplace transforms and complex variable analysis applied to vibrations and dynamic system analysis, series solutions of differential equations, partial differential equations, general matrix applications to a variety of large systems of equations in engineering, calculus of variation, and Ritz method for various engineering problems.

    Notes: This course is cross listed with BME 673 .


    Check course scheduling information


  
  • ME 680 Advanced Strength of Materials

    Credits: (3-0) 3

    Study of advanced concepts in strength of materials. Topics will be selected from the following: theories of stress and strain, failure criteria, energy methods, torsion, nonsymmetrical beams on elastic foundation, plates, shells, stress concentrations, contact stresses, finite element methods, and plastic behavior of solids.

    Notes: This course is cross listed with EM 680 .


    Check course scheduling information


  
  • ME 683 Advanced Mechanical System Control

    Credits: (3-0) 3

    Derivation of state equations for continuous and discrete control systems. A study of optimal and adaptive control of mechanical systems. (Manufacturing Elective)


    Check course scheduling information


  
  • ME 691 Independent Study

    Credits: 1 to 3

    Includes directed study, problems, readings, directed readings, special problems, and special projects. Students complete individualized plans of study which include significant one-on-one student-teacher involvement. The faculty member and students negotiate the details of the study plans. Meeting depending upon the requirements of the topic.

    Prerequisites: Permission of instructor.


    Check course scheduling information


  
  • ME 692 Topics

    Credits: 1 to 3

    Includes current topics, advanced topics and special topics. A course devoted to a particular issue in a specified field. Course content is not wholly included in the regular curriculum. Guest artists or experts may serve as instructors.


    Check course scheduling information


  
  • ME 713 Advanced Solid Mechanics I

    Credits: (3-0) 3

    Presented and discussed. Emphasis is placed on the mathematical description of phenomenological behavior, deformation and flow. Practical solutions from the classical theories of solid mechanics are discussed.

    Notes: This course is cross listed with MES 713 .


    Check course scheduling information


  
  • ME 715 Advanced Composite Materials

    Credits: (3-0) 3

    Includes classification and mechanical behavior of composite materials, macro-mechanical behavior of lamina and laminates. Course emphasizes study of advanced composite laminates including failure theories, experimental methods, stresses, strains, and deformations.


    Check course scheduling information


  
  • ME 736 Advanced Finite Element Methods

    Credits: (3-0) 3

    Variational and weighted residual approach to finite element equations. Emphasis on two- and three-dimensional problems in solid mechanics. Isoparametric element formulation, higher order elements, numerical integration, imposition of constraints, convergence, and other more advanced topics. Introduction to geometric and material nonlinearities. Introduction to the solution of dynamic problems and time integration. Use of finite element computer programs.

    Notes: This course is cross listed with BME 736 .


    Check course scheduling information


  
  • ME 770 Continuum Mechanics

    Credits: (3-0) 3

    Introduction to tensor algebra and calculus. Derivation of kinematic, stress, strain, and thermodynamic field equations governing continuous media. Development of constitutive relations for real materials. Applications to problems in fluid and solid mechanics.

    Notes: This course is cross listed with MES 770 .


    Check course scheduling information


  
  • ME 773 Applied Engineering Analysis II

    Credits: (3-0) 3

    Applications of numerical methods to mechanical engineering problems. Topics will include data processing techniques, curve fitting and interpolation of experimental information, solutions to systems of ordinary differential equations, solutions to partial differential equations, and numerical integration both of known functions and functions described only by experimental data.

    Notes: This course is cross listed with BME 773 .


    Check course scheduling information


  
  • ME 781 Robotics

    Credits: (3-0) 3

    The course covers the following topics as related to modern industrial robots, sensors and actuators, motion trajectories, synthesis, control, computers and languages, available robots, and applications. (Manufacturing Elective)


    Check course scheduling information


  
  • ME 788 Master’s Research Problems/Projects

    Credits: Credit to be arranged.

    Independent research problems/projects that lead to a research or design paper but not to a thesis. The plan of study is negotiated by the faculty member and the candidate. Contact between the two may be extensive or intensive. Does not include research courses which are theoretical.


    Check course scheduling information


  
  • ME 790 Seminar

    Credits: (1-0) 1

    A highly focused, and topical course. The format includes student presentations and discussions of reports based on literature, practices, problems, and research. Seminars may be conducted over electronic media such as internet and are at the upper division graduate levels.

    Notes: May not be repeated for credit.


    Check course scheduling information


  
  • ME 791 Independent Study

    Credits: 1 to 3

    Includes directed study, problems, readings, directed readings, special problems, and special projects. Students complete individualized plans of study which include significant one-on-one student-teacher involvement. The faculty member and students negotiate the details of the study plans. Meetings depending upon the requirements of the topic.

    Prerequisites: Permission of instructor.


    Check course scheduling information


  
  • ME 792 Topics

    Credits: 1 to 3

    Includes current topics, advanced topics and special topics. A course devoted to a particular issue in a specified field. Course content is not wholly included in the regular curriculum. Guest artists or experts may serve as instructors.


    Check course scheduling information


  
  • ME 798 Thesis

    Credits: Credit to be arranged.

    A formal treatise presenting the results of study submitted in partial fulfillment of the requirements for the applicable degree. The process requires extensive and intensive one-on-one interaction between the candidate and professor with more limited interaction between and among the candidate and other members of the committee.


    Check course scheduling information


  
  • ME 896 Field Experience

    Credits: (0-3) 3

    Applied, monitored, and supervised field-based learning experience for which the student may or may not be paid. Students gain practical experience; they follow a negotiated and/or directed plan of study established by the student, instructor, and field-based supervisor. Due to the presence of a field experience supervisor, a lower level of supervision is provided by the instructor in these courses than is the case with an internship or practicum course.


    Check course scheduling information


  
  • ME 898D Dissertation

    Credits: Credit to be arranged.

    A formal treatise presenting the results of study submitted in partial fulfillment of the requirements for the applicable degree. The process requires extensive and intensive one-on-one interaction between the candidate and professor with more limited interaction between and among the candidate and other members of the committee.

    Notes: Credits to be arranged; not to exceed 30.


    Check course scheduling information



Mining Engineering and Management

  
  • MEM 110L Introduction to Geological and Mining Engineering

    Credits: (0-1) 1

    An introductory course for incoming freshman in geological and mining engineering covering fundamental engineering practices in both disciplines. The course will include short field exercises, hands-on practical exercises, group projects, problem solving (using spreadsheets and other current methods), and engineering ethics. When applicable, industry experts will be invited as guest lecturers to discuss current trends and practices in the industry.

    Notes: This course is cross listed with GEOE 110L .


    Check course scheduling information


  
  • MEM 120 Introduction to Mining, Sustainable Development and Introductory Management

    Credits: (2-0) 2

    This course presents an introductory overview of current surface and underground mining practices, new and emerging mining technology, mining terminology, and mining economics. Mining engineering faculty members are introduced and career paths available to the mining engineering graduate are discussed. The concept of sustainable development as it relates to a minerals venture is introduced, and the interrelationships between mining, the environment, societal needs, and governance is discussed. Also included is an introduction to management concepts, presentation skills, meeting skills, negotiation skills, and basic project management tools.


    Check course scheduling information


  
  • MEM 201L Surveying for Mineral Engineers

    Credits: (0-2) 2

    Principles of surface and underground surveying, including measurements, data collection, calculations, error analysis, topographic mapping, and applications of the Global Positioning System.

    Prerequisites: Sophomore standing.


    Check course scheduling information


  
  • MEM 202 Materials Handling and Transportation

    Credits: (2-0) 2

    The theory of operation of mining equipment, and its selection and application to materials handling in surface and underground mines. Emphasis is on economics, productivity, reliability, maintenance and safety.

    Prerequisites: MEM 120  and PHYS 211 


    Check course scheduling information


  
  • MEM 203 Introduction to Mine Health and Safety

    Credits: (1-0) 1

    Instruction in the safety aspects of mining in accordance with MSHA rules. A study of mine regulations and the recognition of mine hazards along with their prevention and control.

    Prerequisites: Sophomore standing.


    Check course scheduling information


  
  • MEM 204 Surface Mining Methods and Unit Operations

    Credits: (2-0) 2

    A study of surface mining techniques and unit operations applicable to metal mining, coal mining, quarrying and other surface mining operations. Topics include mine design and planning, surface drilling and blasting, the applicability and performance characteristics of earthmoving equipment, and an introduction to mine drainage.

    Prerequisites: MEM 120  or permission of instructor.


    Check course scheduling information


  
  • MEM 301/301L Computer Applications in Mining/Lab

    Credits: (1-1) 2

    Computer hardware and software. Applications in exploration and resource modeling, equipment selection and simulations, mine planning and design, rock stability analysis, and economics and cost estimates. Emphasis on three-dimensional modeling and visualization. Vulcan software and other software applications.

    Prerequisites: GE 130/130L  or permission of instructor.
    Corequisites: MEM 301L


    Check course scheduling information


  
  • MEM 302 Mineral Economics and Finance

    Credits: (3-0) 3

    An introduction to the concepts of the time value of money and the application of time value of money decision criteria to mineral project evaluation situations. Both before-tax and after-tax investment situations are discussed. A discussion of the financing options available to a company for expansion, new project development or acquisitions.

    Prerequisites: Junior standing.


    Check course scheduling information


  
  • MEM 303 Underground Mining Methods and Equipment

    Credits: (2-0) 2

    A study of underground mining techniques, unit operations, and equipment applicable to coal mining, metal mining, quarrying and tunneling operations. Topics include mining method selection, mine design and planning, drilling and blasting, and novel underground mining methods.

    Prerequisites: Sophomore or junior standing.


    Check course scheduling information


  
  • MEM 304/304L Theoretical and Applied Rock Mechanics/Lab

    Credits: (2-1) 3

    Principles of rock mechanics and mechanics of materials. Concept of stress, strain and the theory of elasticity. Applications in mining, geological engineering and tunneling. Emphasis on the design of safe structures in rocks. Laboratory experience for determining the basic physical and mechanical properties of rocks.

    Prerequisites: EM 214  or EM 216  or equivalent and junior standing.
    Corequisites: MEM 304L


    Check course scheduling information


  
  • MEM 305 Introduction to Explosives Engineering

    Credits: (3-0) 3

    An introduction to explosives products; the theory of rock breakage by explosives; and the design of blast patterns for different applications including surface blasting techniques, underground blasting techniques, controlled blasting and specialized techniques. The techniques and equipment used to control and/or monitor airblast, ground vibration and flyrock are studied.

    Prerequisites: Junior standing.


    Check course scheduling information


  
  • MEM 307 Mineral Exploration and Geostatistics

    Credits: (3-0) 3

    The application of the theory of geostatistics to quantify the geological concepts of (1) area of influence of a sample, (2) the continuity of the regionalized variable within a deposit, and (3) the lateral changes in the regionalized variable according to the direction. Basic concepts and theory of probablility and statistics will be introduced, including probability distributions, sampling distributions, treatment of data, the mean, variance, and correlation. Computer techniques will be extensively used for geostatistical estimation of grade, volume and variance.

    Prerequisites: Junior standing.


    Check course scheduling information


  
  • MEM 401/401L Theoretical and Applied Mine Ventilation/Lab

    Credits: (3-1) 4

    Analysis of mine atmosphere and the control of airflow in an underground mine. Basic principles of thermodynamics and air conditioning. Emphasis is on solutions of airflow networks and the design principles for mine ventilation systems. Laboratory experience for determining the basic pressure and airflow parameters, ventilation network analysis and fan characteristics.

    Prerequisites: MEM 303 , ATM 404/504 , EM 328  and senior standing.
    Corequisites: MEM 401L


    Check course scheduling information


  
  • MEM 405 Mine Permitting and Reclamation

    Credits: (3-0) 3

    A study of environmental problems associated with both surface and underground mining and the reclamation practices that have been developed or are being evaluated to alleviate these problems. Federal, state and local reclamation regulations are examined for their effects on present and future mining practices and costs. Field trips to mining operations in the Black Hills region or the Powder River Basin will be taken for on-site observation of actual reclamation practices.

    Prerequisites: Junior standing.


    Check course scheduling information


  
  • MEM 410/510 Advanced Mineral Economics for Managers

    Credits: (3-0) 3

    A discussion of the fundamental factors critical to valuation of mineral properties. The three major approaches to mineral property valuation - the cost approach, the market approach, and the income approach - will be discussed. Additional subjects for discussion will include: selecting discount rates, leveraged cash flow, risk assessment, real asset pricing models, and forecasting techniques.

    Prerequisites: MEM 302  or equivalent or permission of instructor.
    Notes: Students enrolled in MEM 510 will be held to a higher standard than those enrolled in MEM 410.


    Check course scheduling information


  
  • MEM 415/515 Advanced Mining Geotechncial Engineering

    Credits: (3-0) 3

    This course provides students with a practical understanding of the advanced application of geotechnical engineering principles in mining - from the perspective of planning, design, and operations in both soft and hard rock as well as underground and open-cut mining systems. In the course will be a further discussion of new methods of collection and analysis of geotechnical data, geotechnical risk of different mining methods, caving mechanics, dynamic events: seismicity, rock bursts, airblasts & outbursts, geotechnical instrumentation and monitoring, and geotechnical risk mitigation.

    Prerequisites: MEM 304/304L  or equivalent or permission of instructor.
    Notes: Students enrolled in MEM 515 will be held to a higher standard than those enrolled in MEM 415.


    Check course scheduling information


  
  • MEM 420/520 Advanced Tunneling and Underground Excavation

    Credits: (3-0) 3

    The course will discuss advanced topics in tunnel excavation and design. These topics will include laboratory and in situ rock characterization and classification. Also to be discussed are mechanical, convention, and cut and cover methods of excavation and tunnel layout in hard and soft rock. Presentations will address equipment selection and prediction of performance expected of the equipment; and initial ground support and design of permanent lining. Also discussed will be tunnel safety, instrumentation and monitoring, and tunnel risk analysis.

    Prerequisites: MEM 304/304L  or equivalent or permission of instructor.
    Notes: Students enrolled in MEM 520 will be held to a higher standard than those enrolled in MEM 420.


    Check course scheduling information


  
  • MEM 425/525 Advanced Rock Mechanics

    Credits: (3-0) 3

    A discussion of advanced topics in static and dynamic rock mechanics: elasticity theory, failure theories, and fracture mechanics applied to rock, stress wave propagation, and dynamic elastic constants, rock mass classification methods for support design. Discussions will include advanced analytical, numerical modeling and empirical design methods and probabilistic and deterministic approaches to rock engineering designs. Presented will be excavation design examples for shafts, tunnels, large chambers and mine pillars in coal and metal mines. Also discussed will be seismic loading of structures in rock and the phenomenon of rock burst and its alleviation.

    Prerequisites: MEM 304/304L  or equivalent or permission of instructor.
    Notes: Students enrolled in MEM 525 will be held to a higher standard than those enrolled in MEM 425.


    Check course scheduling information


  
  • MEM 430/530 Resource Industry Mergers and Acquisitions

    Credits: (3-0) 3

    A discussion of the fundamentals of acquisitions in the resource industry, including negotiations and due diligence.  The primary types of transactions will be discussed, including direct acquisition, joint ventures, options/earnings, mergers, amalgamation, leases and off-takes.  Other relevant subjects to be discussed during the class include public market financing for acquisitions and the process of due diligence for mergers and acquisitions.

    Prerequisites: MEM 302  or equivalent or permission of instructor.
    Notes: Students enrolled in MEM 530 will be held to a higher standard than those enrolled in MEM 430.


    Check course scheduling information


  
  • MEM 433/433L/533/533L Computer Applications in Geoscience Modeling/Lab

    Credits: (3-1) 4

    The use of computer techniques in modern geoscience modeling of mining, geology, and environmental problems such as exploration, geological characterization and mining exploitation. Practical application of state-of- the-art Vulcan modeling software will be an essential part of the course.

    Prerequisites: Junior standing.
    Corequisites: MEM 433L or MEM 533L
    Notes: Students enrolled in MEM 533/533L will be held to a higher standard than those enrolled in MEM 433/433L.


    Check course scheduling information


  
  • MEM 435/535 Resource Industry Finance and Accounting

    Credits: (3-0) 3

    Fundamental concepts the cost of capital, capital budgeting, the balance sheet and the analysis of financial statements, including rations and cash flow analysis for the resource industry.  A discussion of reporting requirements for public companies will also be included.

    Prerequisites: MEM 302  or equivalent or permission of instructor.
    Notes: Students enrolled in MEM 535 will be held to a higher standard than those enrolled in MEM 435.


    Check course scheduling information


  
  • MEM 440/540 Advanced Mine Ventilation and Environmental Engineering

    Credits: (3-0) 3

    Advanced topics in: mine air-quality control; economics of airflow; climate simulation; rock-to-air heat transfer in underground openings; ventilation network analysis; control flow and free splitting networks; controlled recirculation; diffusion and migration of contaminants in mine environment; control of mine fires and explosion; noise in underground environment; mine air conditioning systems; mine lighting; mine rescue apparatus.

    Prerequisites: MEM 401/401L  or equivalent or permission of instructor.
    Notes: Students enrolled in MEM 540 will be held to a higher standard than those enrolled in MEM 440.


    Check course scheduling information


  
  • MEM 445/545 Advanced Geostatistics and Grade Estimations

    Credits: (3-0) 3

    The theory of regionalized variables.  Exploratory spatial data analysis, resource estimation, random function models for spatial data, estimation and modeling of variograms and covariances, isotropy, anisotropy, ordinary and universal kriging estimators and equations, regularization of variograms, estimation of spatial averages, non-linear estimators, cross validation, includes use of geostatstical software.  Two-dimensional and three-dimensional kriging.  Application of hydrology, soil science, atmospheric science, ecology, geography and related fields.

    Prerequisites: MEM 307  or equivalent or permission of instructor.
    Notes: Students enrolled in MEM 545 will be held to a higher standard than those enrolled in MEM 445.


    Check course scheduling information


  
  • MEM 450/550 Rock Slope Engineering

    Credits: (3-0) 3

    Modes of slope failure. Economic consequences of instability in mining and construction. Geological factors controlling stability of rock slopes. Shear strength of highly jointed rock mass and discontinuities. Projection methods. Vectoral analysis of 3-D problems by means of the sterographic projection method. Analytical, graphical and computer analysis of planar, wedge and toppling failures. Probabilistic methods.

    Prerequisites: MEM 304/304L  or CEE 346/346L  or equivalent.
    Notes: Students enrolled in MEM 550 will be held to a higher standard than those enrolled in MEM 450.


    Check course scheduling information


  
  • MEM 455/555 Rock Slope Engineering II

    Credits: (3-0) 3

    Advanced topics in rock slope engineering including limiting equilibrium analysis of plane shear, rotational shear, and wedge-type failure; 2-D and 3-D numerical methods; analysis of rockfall; and laboratory and field methods including measurement of structural orientation, determination of strength properties using the direct shear, and instrumentation.

    Prerequisites: MEM 304/304L  or CEE 346/346L  or equivalent, and MEM 450/550  or CEE 646  or equivalent, or permission of instructor.
    Notes: Students enrolled in MEM 555 will be held to a higher standard than those enrolled in MEM 455.


    Check course scheduling information


  
  • MEM 464 Mine Design and Feasibility Study

    Credits: (0-4) 4

    A complete mine feasibility study conducted as a senior design project. Students will have a choice of designing one of the following: a surface or underground coal mine, a quarry, a surface or underground hard rock metal mine, or a sub-surface underground space (tunneling, large excavations, industrial/environmental underground storage site, or underground science laboratory). A comprehensive study of principles and practices involved in developing an ore deposit (surface or underground) starting with drill hole data following through with a complete feasibility study (based on financial returns on investment and sensitivity analysis) covering ore reserve calculations, and selection of mining methods and equipment. Computerized approach will be an integral part of the course: SurvCADD software and Vulcan software are available to use. In addition to a computerized model of the mine, a final written report and presentation in front of the class will be required.

    Pre or Corequisites: MEM 302 , MEM 304/304L , MEM 401/401L  and senior standing.


    Check course scheduling information


  
  • MEM 466 Mine Management

    Credits: (2-0) 2

    The study of critical management issues of fundamental importance to the mining industry: forms of management, organizational structures, project management and mine administration, risk management and modern management tools. Development of leadership skills. Management of human resources.

    Prerequisites: Senior standing or permission of instructor.


    Check course scheduling information


  
  • MEM 480/580 Advanced Explosives and Blasting

    Credits: (3-0) 3

    A discussion of most recent advances in blasting technology. Most recent developments in new explosives and initiation systems along with new methods of face profiling and blast design concepts will be dealt with in detail. Discussions will include guest speakers and some real time case studies. Electronic initiation systems and their associated technological challenges will be studied in some detail.

    Prerequisites: MEM 305 , or equivalent, or permission of instructor.
    Notes: Students enrolled in MEM 580 will be held to a higher standard than those enrolled in MEM 480.


    Check course scheduling information


  
  • MEM 491 Independent Study

    Credits: 1 to 3

    Includes directed study, problems, readings, directed readings, special problems, and special projects. Students complete individualized plans of study which include significant one-on-one student-teacher involvement. The faculty member and students negotiate the details of the study plans. Meetings depending upon the requirements of the topic.

    Prerequisites: Permission of instructor.


    Check course scheduling information


  
  • MEM 492 Topics

    Credits: 1 to 3

    Includes current topics, advanced topics, and special topics. A course devoted to a particular issue in a specified field. Course content is not wholly included in the regular curriculum. Guest artists or experts may serve as instructors.


    Check course scheduling information


  
  • MEM 610 Topics in Mineral Economics, Sustainability and Mine Regulation

    Credits: (3-0) 3

    This survey course covers mineral resources development from the legal, regulatory, management and environmental (sustainability, reclamation and closure) perspective.  The course is ideal for graduate students who are working on mineral resources research or special topics from a variety of disciplines who wish to learn more about the scope, current issues, and future challenges.

    Prerequisites: Graduate student or permission of instructor.


    Check course scheduling information


  
  • MEM 692 Topics

    Credits: 1 to 3

    Includes current topics, advanced topics and special topics.  A course devoted to a particular issue in a specified field.  Course content is not wholly included in the regular curriculum.  Guest artists or experts may serve as instructors.


    Check course scheduling information


  
  • MEM 788 Master’s Research Problems/Projects

    Credits: Credit to be arranged.

    Independent research problems/projects that lead to a research or design paper but not to a thesis.  The plan of study is negotiated by the faculty member and the candidate. Contact between the two may be extensive or intensive.  Does not include research courses which are theoretical.


    Check course scheduling information


 

Page: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11